Fluctuation and Stress Relaxation Dynamics in a Block Copolymer Melt

Amish Patel, Nitash Balsara
(UC Berkeley and LBL)
Simon Mochrie, Suresh Narayanan,
Alec Sandy
(APS, Argonne)

Funding: NSF

X-ray photon correlation spectroscopy (XPCS)

0.98

0.1

- Is a powerful tool for probing the dynamics of concentration fluctuations in diblock copolymers.
- Measures an intensity autocorrelation function which is usually a decaying function.

$$g2(t) \equiv \frac{\langle I(q^*,0)I(q^*,t)\rangle}{\langle I(q^*,t)\rangle^2} = 1 + ke^{-2t/\tau_{XPCS}}$$

t (seconds) τ_{XPCS}=XCPS relaxation time

10

k=contrast factor

1000

100

Characterization

Poly(Styrene-block-isoprene) (SI)

- Mol. Wt. =33,000g/mol
- Vol. Fraction of styrene=0.18
- Order-to-disorder transition at 70°C from hexagonally packed cylinders to disordered micelles(locally stable concentration fluctuations).

XPCS relaxation times for SI

Rheology on SI

The storage (G') and loss (G") moduli show terminal (liquid-like) behavior in the temperature range (70-90°C) where micelles are present. i.e. G'~ω⁻² and G"~ ω⁻¹

Terminal relaxation times

 From the low frequency rheology data, we can compute the terminal relaxation time, which is the so-called longest relaxation time for the relaxation of the diblock copolymer chains.

$$\tau_{\text{rheo}} = J_e \eta_0$$

$$J_e = [G'(\omega)/\{G''(\omega)\}^2] \text{ as } \omega \rightarrow 0$$

$$\eta_0 = [G''(\omega)/\omega] \text{ as } \omega \rightarrow 0$$

$\tau_{XPCS} Vs \tau_{TR}$

- τ_{XPCS} , the microscopic relaxation time is 1-2 orders of magnitude larger than τ_{TR} , the socalled longest relaxation time!
- Also, the temperature dependencies of τ_{XPCS} and τ_{TR} are similar but not identical.

Fredrickson Larson Theory

$$G'(\omega) = \frac{k_B T \omega^2}{30\pi^2 R_g^3} \int_0^{x_c} x^{5/2} \frac{S^2(x)}{\omega^2 + 4\overline{\omega}^2(x)} \left[\frac{\partial S^{-1}(x)}{\partial x} \right] dx$$

$$G''(\omega) = \frac{k_B T \omega}{15\pi^2 R_g^3} \int_0^{x_c} x^{5/2} \frac{S^2(x)\overline{\omega}(x)}{\omega^2 + 4\overline{\omega}^2(x)} \left[\frac{\partial S^{-1}(x)}{\partial x} \right] dx$$

$$\overline{\omega}(x) = \frac{1}{2\tau} x g(x) N S^{-1}(x) \qquad \tau_{\text{rheo}} = J_e \eta_0$$

$$\tau_{XPCS} = 1/\overline{\omega}(x^*) \qquad J_e = [G'(\omega)/\{G''(\omega)\}^2] \text{ as } \omega \to 0$$

$$\eta_0 = [G''(\omega)/\omega] \text{ as } \omega \to 0$$

$$\frac{\partial}{\partial t}P[\psi,t] = \int \frac{d\vec{k}}{(2\pi)^3} \frac{\delta}{\delta \psi(\vec{k})} \left\{ k^2 \lambda(k) \left[\frac{\delta}{\delta \psi(-\vec{k})} + \beta \frac{\delta H[\psi]}{\delta \psi(-\vec{k})} \right] - \dot{\gamma}(t) k_x \frac{\partial}{\partial k_y} \psi(\vec{k}) \right\} P[\psi,t]$$

S(q) as a function of temperature

Comparing theory and experiment

- The fact that $\tau_{\text{XPCS}}/\tau_{\text{TR}}$ is greater than 1 is in agreement with theory
- Near the ODT, $\tau_{\text{XPCS}}/\tau_{\text{TR}}$ is an increasing function of the distance from the transition.
- The experimentally meaured $\tau_{\text{XPCS}}/\tau_{\text{TR}}$ is greater than the theoretical prediction.

Dynamics of SI using XPCS

- The time constant τ, measured by XPCS could be postulated to arise from one of the following two processes:
- 1. Diffusion of the micelles.
- 2. Dissolution of the micelles.

Micelles fall apart and reassemble

Micelles fall apart and reassemble τ_{diss}

Micelles fall apart and reassemble τ_{diss}

Micelles fall apart and reassemble

Diffusion of intact micelles

Diffusion of intact micelles (τ_{diff})

Intact Micelle diffusion

Stokes-Einstein diffusion time,

$$\tau_{SE} = \pi R_H^3 \eta_0(T)/k_B T$$
where

R_H=hydrodynamic radius of the micelle

$$au_{
m diss}>> au_{
m diff}$$

Conclusions

- We have demonstrated the use of XPCS to measure the microscopic dynamics of a block copolymer melt.
- We found that near the ODT, τ_{XPCS} is greater than τ_{rheo} , in agreement with the Fredrickson-Larson theory.
- Concentration fluctuations relax by diffusion of intact micelles. Stress relaxes by faster process on longer length scales!